
Понятие о дифференциальных уравнениях
В ходе решения различных практических задач возникают уравнения, которые связывают производные некоторой функции, саму функцию и независимую переменную.
Уравнения, которые помимо функций включают в себя еще и производные этих функций, называются дифференциальными уравнениями.
Например, рассмотрим второй закон Ньютона. Согласно нему, при движении материальной точки постоянной массы по прямой будет спрвдлива следующая формула F = m*a, где F – сила, которая вызывает движение, а – ускорение точки.
Положим, что сила зависит тольк от времени, тогда F = F(t). Как уже известно, ускорение есть вторая производная от координаты по времени (a(t) = x’’(t). Тогда соединив все воедино, получаем дифференциальное уравнение относительно x(t):
F(t) = m*x’’(t).
Либо x’’(t) = F(t)/m.
Решение уравнений:
Для решения такого уравнения сначала найдем x‘(t), как первообразную функции F(t)/m. После этого сможем найти x(t), как первообразную, от полученного результата x’(t) = v(t).
При интегрировании у нас на каждом шаге появятся по постоянной, то есть общее решение будет зависеть от двух произвольных постоянных. Чтобы их найти, обычно задают некоторую координату и скорость в определенный момент времени t.
Помимо задач описанных выше, в физике, технике, биологии и в ряде социальных наук многие задачи сводятся к нахождению функций, удовлетворяющих следующему дифференциальному уравнению:
f'(x) = k*f(x), где k - некоторая константа.
Смысл этого дифференциального уравнения состоит в том, что скорость изменения функции в некоторой точке х будет пропорциональна значению функции в этой точке. Исходя из формулы производной показательной функции можно установить, что решением этого уравнения является любая функция вида f(x) = C*e(k * x), где С – некоторая постоянная.
Так как в выборе константы С нас никто не ограничивает, то следует полагать, что дифференциальное уравнение такого вида имеет бесконечно много решений.
А так как дифференциальное уравнение такого вида имеет бесконечно много решений, часто бывает необходимо выделить какое-то одно решение.
Для этого вводят определенные начальные условия.
Уравнениями такого типа описывается, например, период полураспада радиоактивного вещества. Дифференциальные уравнения - это очень мощный математический аппарат. Во многих математически моделях различных систем используются дифференциальные уравнения. Например, моделирование простейших боевых действий и т.д.