
Три правила нахождения первообразных: алгоритм нахождения и примеры
Три правила нахождения первообразных
Существует три основных правила нахождения первообразных функций. Они очень похожи на соответствующие правила дифференцирования.
Правило 1
Если F есть первообразная дл некоторой функции f, а G есть первообразная для некоторой функции g, то F + G будет являться первообразной для f + g.
По определению первообразной F’ = f. G’ = g. А так как эти условия выполняются, то по правилу вычисления производной для суммы функций будем иметь:
(F + G)’ = F’ + G’ = f + g.
Правило 2
Если F есть первообразная для некоторой функции f, а k – некоторая постоянная. Тогда k*F есть первообразная для функции k*f. Это правило следует из правила вычисления производной сложной функции.
Имеем: (k*F)’ = k*F’ = k*f.
Правило 3
Если F(x) есть некоторая первообразная для функции f(x), а k и b есть некоторые постоянные, причем k не равняется нулю, тогда (1/k)*F*(k*x+b) будет первообразной для функции f(k*x+b).
Данное правило следует из правила вычисления производной сложной функции:
((1/k)*F*(k*x+b))’ = (1/k)*F’(k*x+b)*k = f(k*x+b).
Рассмотрим несколько примеров применения этих правил:
Пример 1. Найти общий вид первообразных для функции f(x) = x^3 +1/x^2. Для функции x^3 одной из первообразных будет функция (x^4)/4, а для функции 1/x^2 одной из первообразных будет являться функция -1/x. Используя первое правило, имеем:
F(x) = x^4/4 – 1/x +C.
Пример 2. Найдем общий вид первообразных для функции f(x) = 5*cos(x). Для функции cos(x) одна из первообразных будет являться функция sin(x). Если теперь воспользоваться вторым правилом, то будем иметь:
F(x) = 5*sin(x).
Пример 3. Найти одну из первообразных для функции y = sin(3*x-2). Для функции sin(x) одной из первообразных будет являться функция -cos(x). Если теперь воспользоваться третьим правилом, то получим выражение для первообразной:
F(x) = (-1/3)*cos(3*x-2)
Пример 4. Найти первообразную для функции f(x) = 1/(7-3*x)^5
Первообразной для функции 1/x^5 будет являться функция (-1/(4*x^4)). Теперь воспользовавшись третьим правилом, получим:
F(x) = 1/(12*(7-3*x)^4).