top of page

Графический способ решения систем уравнений

Рассмотрим следующие уравнения:

 

1. 2*x + 3*y = 15;

2. x2 + y2 = 4;

3. x*y = -1;

4. 5*x3 + y2 = 8.

 

Каждое из представленных выше уравнений является уравнением с двумя переменными. Множество точек координатной плоскости, координаты которых обращают уравнение в верное числовое равенство, называется графиком уравнения с двумя неизвестными.

 

                                                График уравнения с двумя переменными

 

Уравнения с двумя переменными имеют большое многообразие графиков. Например, для уравнения 2*x + 3*y = 15 графиком будет прямая линия, для уравнения x2 + y2 = 4 графиком будет являться окружность с радиусом 2, графиком уравнения y*x = 1 будет являться гипербола и т.д.

 

У целых уравнений с двумя переменными тоже существует такое понятие, как степень. Определяется эта степень, так же как для целого уравнения с одной переменной. Для этого приводят уравнение к виду, когда левая часть есть многочлен стандартного вида, а правая – нуль. Это осуществляется путем равносильных преобразований.

 

                                           Графический способ решения систем уравнения

 

Разберемся, как решать системы уравнений, которые будут состоять из двух уравнений с двумя переменными. Рассмотрим графический способ решения таких систем.

 

Пример 1. Решить систему уравнений:

{ x2 + y2 = 25

{y = -x2 + 2*x + 5.

 

Построим графики первого и второго уравнений в одной системе координат. Графиком первого уравнения будет окружность с центром в начале координат и радиусом 5. Графиком второго уравнения будет являться парабола с ветвями, опущенными вниз.

Все точки графиков будут удовлетворять каждый своему уравнению. Нам же необходимо найти такие точки, которые будут удовлетворять как первому, так и второму уравнению. Очевидно, что это будут точки, в которых эти два графика пересекаются.

 

Используя наш рисунок находим приблизительные значения координат, в которых эти точки пересекаются. Получаем следующие результаты:

A(-2,2;-4,5), B(0;5), C(2,2;4,5), D(4,-3).

 

Значит, наша система уравнений имеет четыре решения.

 

x1 ≈ -2,2; y1 ≈ -4,5;

x2 ≈ 0; y2 ≈ 5;

x3 ≈ 2,2; y3 ≈ 4,5;

x4 ≈ 4,y4 ≈ -3.

 

Если подставить данные значения в уравнения нашей системы, то можно увидеть, что первое и третье решение являются приближенными, а второе и четвертое – точными. Графический метод часто используется, чтобы оценить количество корней и примерные их границы. Решения получаются чаще приближенными, чем точными.

bottom of page