
Определение квадратного уравнения
Квадратным уравнением называют уравнение вида a*x^2 +b*x+c=0, где a,b,c некоторые произвольные вещественные (действительные) числа, а x – переменная. Причем число а не равно 0.
Числа a,b,c называются коэффициентами. Число а – называется старшим коэффициентом, число b коэффициентом при х, а число с называют свободным членом.
В некоторой литературе встречаются и другие названия. Число а называется первым коэффициентом, а число b – вторым коэффициентом.
Классификация квадратных уравнений
Квадратные уравнения имеют свою классификацию.
По наличию коэффициентов:
1. Полные
2. Неполные
По значению коффициента старшей степени неизвестного (значинию старшего коэффициента):
1. Приведенные
2. Неприведенные
Квадратное уравнение называется полным если в нем присутствуют все три коэффициента и они отличны от нуля. Общий вид полного квадратного уравнения: a*x^2 +b*x+c=0;
Квадратное уравнение называется неполным если в уравнении a*x^2 +b*x+c=0 один из коэффициентов b или c равен нулю (b=0 или с=0), впрочем неполным квадратным уравнением будет являться и уравнение у которого и коэффициент b и коэффициент с одновременно равны нулю (и b=0, и c=0).
Стоит обратить внимание, что о старшем коэффициенте тут ничего не говориться, так как он по определению квадратного уравнения должен быть отличен от нуля.
Квадратное уравнение называется приведенным если его старший коэффициент равен единице (a=1). Общий вид приведенного квадратного уравнения: x^2 +d*x+e=0.
Квадратное уравнение называется неприведенным, если старший коэффициент в уравнении отличен от нуля. Общий вид неприведенного квадратного уравнения: a*x^2 +b*x+c=0.
Следует заметить, что любое неприведенное квадратное уравнение можно привести к приведенному. Для этого необходимо разделить коэффициенты квадратного уравнения на старший коэффициент.
Примеры квадратного уравнения
Рассмотрим пример: имеем уравнение 2*x^2 – 6*x+7 =0;
Преобразуем его в приведенное уравнение. Старший коэффициент равен 2. Поделим на него коэффициенты нашего уравнения и запишем ответ.
x^2 – 3*x+3,5 =0;
Как вы заметили, в правой части квадратного уравнения стоит многочлен второй степени a*x^2 +b*x+c. Его еще называют квадратным трехчленом.