
Решения уравнения x^2 = a
Рассмотрим уравнение x^2=a, где в качестве а, может выступать произвольное число. Существует три случая решения этого уравнения, в зависимости от значения, которое принимает число а (а0).
Рассмотрим каждый из случаев в отдельности.
Примеры различных случаев уравнения x^2=a
x^2=a, при a<0
Так как квадрат любого действительного числа не может быть отрицательным числом, уравнение x^2=a, при a
x^2=a, при a=0
В данном случае уравнение имеет один корень. Этим корнем является число 0. Так как уравнение можно переписать в виде х*х=0, то еще иногда говорят, что данное уравнение имеет два корня, которые равны между собой и равны 0.
x^2=a, при a>0
В этом случае уравнение x^2=a, при aРешается оно следующим образом. Сначала переносим а в левую часть.
x^2 – a = 0;
Из определения квадратного корня следует, что a можно записать в следующем виде: a=(√a)^2. Тогда уравнение можно переписать следующим образом:
x^2 – (√a)^2 = 0.
В левой части видим формулу разности квадратов, разложим её.
(x+√a)*(x-√a)=0;
Произведение двух скобок равно нулю, если хотя бы одна из них равна нулю. Следовательно,
x+√a=0;
x-√a=0;
Отсюда, x1=√a x2=-√a.
Данное решение можно проверить и построив график.
Для примера сделаем это для уравнения x^2 = 4.
Для этого необходимо построить два графика y=x^2 и y=4. И посмотреть координаты х их точек пересечения. Корни должны получиться 2 и -2. На рисунке все наглядно видно
