
Решение дробных рациональных уравнений
Целое выражение – это математическое выражение, составленное из чисел и буквенных переменных с помощью действий сложения, вычитания и умножения. Также к целым относятся выражения, которые имеют в своем составе деление на какое-либо число, отличное от нуля.
Понятие дробного рационального выражения
Дробное выражение - это математическое выражение, которое помимо действий сложения, вычитания и умножения, выполненных с числами и буквенными переменными, а также деления на число не равное нулю, содержит также деление на выражения с буквенными переменными.
Рациональные выражения - это все целые и дробные выражения. Рациональные уравнения - это уравнения, у которых левая и правые части являются рациональными выражениями. Если в рациональном уравнении левая и правая части будут являться целыми выражениями, то такое рациональное уравнение называется целым.
Если в рациональном уравнении левая или правая части будут являться дробными выражениями, то такое рациональное уравнение называется дробным.
Примеры дробных рациональных выражений
1. x-3/x = -6*x+19
2. (x-4)/(2*x+5) = (x+7)/(x-2)
3. (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5))
Схема решения дробного рационального уравнения
1. Найти общий знаменатель всех дробей, которые входят в уравнение.
2. Умножить обе части уравнения на общий знаменатель.
3. Решить полученное целое уравнение.
4. Произвести проверку корней, и исключить те из них, которые обращают в нуль общий знаменатель.
Так как мы решаем дробные рациональные уравнения, то в знаменателях дробей будут переменные. Значит, будут они и в общем знаменателе. А во втором пункте алгоритма мы умножаем на общий знаменатель, то могут появится посторонние корни. При которых общий знаменатель будет равен нулю, а значит и умножение на него будет бессмысленным. Поэтому в конце обязательно делать проверку полученных корней.
Рассмотрим пример:
Решить дробное рациональное уравнение: (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5)).
Будем придерживаться общей схемы: найдем сначала общий знаменатель всех дробей. Получим x*(x-5).
Умножим каждую дробь на общий знаменатель и запишем полученное целое уравнение.
(x-3)/(x-5) * (x*(x-5))= x*(x+3);
1/x * (x*(x-5)) = (x-5);
(x+5)/(x*(x-5)) * (x*(x-5)) = (x+5);
x*(x+3) + (x-5) = (x+5);
Упростим полученное уравнение. Получим:
x^2+3*x + x-5 – x - 5 =0;
x^2+3*x-10=0;
Получили простое приведенное квадратное уравнение. Решаем его любым из известных способов, получаем корни x=-2 и x=5.
Теперь производим проверку полученных решений:
Подставляем числа -2 и 5 в общий знаменатель. При х=-2 общий знаменатель x*(x-5) не обращается в нуль, -2*(-2-5)=14. Значит число -2 будет являться корнем исходного дробного рационального уравнения.
При х=5 общий знаменатель x*(x-5) становится равным нулю.
Следовательно, это число не является корнем исходного дробного рационального уравнения, так как там будет деление на нуль.
Ответ: х=-2.